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A numerical method is developed for the solution of the Boltzmann equation in order to 
calculate the swarm parameters of a weakly ionised gas. A brief description is given of the 
three main types of swarm experiment in which the measurements of these parameters are 
usually carried out. Then it is shown how these experiments can be simulated by calculation 
in order to explain the discrepancies observed between the parameters measured under the 
same conditions but in different experiments. A description is given of the present method of 
solution which uses both Lesaint’s S, method and an iterative process based on the so-called 
Eddington factor. The efficiency and the accuracy of this treatment is shown in two model 
cases which have already been investigated by several authors. It is observed that the number 
of iterations is drastically reduced and that the results obtained are of high accuracy. 

I. INTR~DuOTI~N 

Experimental determination of the transport parameters in a weakly ionised gas 
have been carried out for many years by means of swarm type experiments. At the 
present time, the measurements are so accurate that the values of the macroscopic 
quantities obtained allow (if compared to the transport parameters given by the 
microscopic calculations) the set of initial cross-sections to be modified and a new set 
to be constructed consistent with the measurements of the transport parameters [ 11. 
This procedure has given very good results in the case of helium [2] and for many 
molecular gases such as nitrogen, oxygen, and carbon dioxide [3,4]. 

To carry out this program many conditions must be fulfilled. First of all we must 
be sure that the microscopic study accurately simulates the experiment. It is now 
known that when the number of electrons in the system varies (i.e., when there is 
ionisation and attachment), the measured quantities are dependent on the mode of 
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observation [5,6]. In this way, the measurements of the drift velocity and of the 
diffusion coefficients of electrons differ greatly according to the experiment (pulsed 
Townsend or time of flight, for example). More precisely, we can show that if the 
scattering gas is not electronegative, the drift velocity measured in the time of flight 
experiment is higher than the drift velocity measured in the pulsed Townsend 
experiment. We shall see later how the microscopic simulation of the main swarm 
experiments can be made in a simple way. 

The calculation of cross sections will only be possible if the method of solution 
giving the electron distribution function is very accurate. There are two methods 
which allow the rigorous calculation of transport coefficients in a gas under an 
electric field: (1) the Monte Carlo simulation and (2) treatment by the Boltzmann 
equation. 

The Monte Carlo simulation is nowadays very often used, but it usually involves 
excessive computing time. It cannot be applied to the determination of cross sections 
and it is mainly restricted to checking the accuracy of the assumptions made in the 
resolution of the Boltzmann equation. 

For reasons of simplicity, most works based on the Boltzmann equation adopt the 
two-term expansion approximation of the distribution function. This assumption, 
which allows the determination of the isotropic part of the distribution function by 
the means of a second-order differential difference equation, is fully valid only when 
the ratio of the electric field E to the molecule density N is weak or when the action 
of inelastic collisions is smaller than that of elastic collisions. In the case of 
molecular gases, for example, the action of inelastic collisions (rotation or vibration) 
is important even though the value of the E/N ratio is low. The anisotropy of the 
distribution function is then very strong and the two-term expansion of the 
distribution function is no longer valid. 

Some recent works have been devoted to the solution of the Boltzmann equation in 
order to develop new methods able to give the velocity distribution function of 
electrons whatever the value of the E/N ratio or the kind of scattering gas. 

We shall see later that generally the simulation of swarm experiments only needs 
the solution of the Boltzmann equation in a hydrodynamic (i.e., equilibrium) regime 

t!e!ir derivatives. 
in which the distribution function depends only on the density of electrons and on 

There are roughly four different ways to attack the solution of the Boltzmann 
equation in this case. First we may put the equation in its integral form and use an 
iterative process. This is the method developed by Rees [8] in the study of the 
transport of electrons in semi-conductors and by Kleban and Davis [9, lo] in the 
determination of the E/N variation of the drift velocity of electrons in methane. We 
can show [ 111 that the number of iterations which are necessary to reach 
convergence is related to the number of collisions which are necessary to reach the 
equilibrium state. As the number of collisions is proportional to the inverse of E/N, 
the number of iterations will increase as E/N decreases (this becomes untrue as E/N 
approaches zero, i.e., as the electrons are almost at rest). 

The calculation of the velocity distribution function by the integral method needs, 
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for every value of the velocity v, to take into account in the integral term the whole 
set of v values between zero and infinity. The computation of this integral term is 
very time consuming. It follows that the integral method (under the form adopted by 
Kleban and Davis) is not very efficient. 

The second way to attack the rigorous study of the Boltzmann equation is to 
expand the distribution functionf(v) in a series of spherical harmonics. We obtain an 
infinite system of differential difference equations paired by their successive 
anisotropies. Using the Galerkin method and expanding into a series of B-spline 
functions, Pitchford [ 121 has been able to solve this system whatever the number of 
anisotropies considered. The distribution functionf(v) is then obtained by solving a 
large linear system, where the main matrix is block tridiagonal, which involves the 
use of a powerful computer. 

Another way to attack the resolution of the Boltzmann equation, starting from the 
differential system mentioned above, consists of expanding the successive anisotropies 
in a series of Sonine orthogonal polynomials with a Maxwellian weight function, the 
associated temperature being connected to the mean energy of the electrons. This 
method, called the moment method, originates from the works of Grad [ 131, Kihara 
[ 141, and Kumar [ 151. It has been applied to the study of the motion of the electrons 
in a weakly ionised gas by Lin et al. [ 161, and it is primarily interesting because the 
main macroscopic quantities are easily related to the expansion coefficients in 
orthogonal polynomials. 

Although all the preceding methods are very different, they theoretically allow the 
rigorous calculation of the distribution functionf(v) whatever its degree of anisotropy 
and whatever the kind of collision (elastic, inelastic, or inonisation) coming to play in 
the discharge. However, at the present time none of the above methods have been 
applied, to our knowledge, to the microscopic study of the motion of electrons with 
ionisation or/and attachment. In this case, as we shall see later, the simulation of the 
swarm experiments involves the resolution of a nonlinear equation and consequently 
needs an iterative process. So the methods of Pitchford and Lin et al. would be 
difficult to adapt as they are not iterative in nature, unlike the integral method of 
Kleban and Davis. 

Until now the ionisation and attachment processes have mainly been included in 
the two-term expansion approximations [6]. The only general studies taking into 
account the ionisation and/or attachment collisions are those of Kitamori et al. [ 171. 
Contrary to the three works mentioned above, Kitamori’s treatment starts from the 
initial integrodifferential form of the Boltzmann equation and uses a finite difference 
approximation on the three variables u, 0, t, where u is the module of the velocity 
vector v, 0 the angle between -E and v, and t the time. It is then possible to study the 
change with time of the macroscopic parameters before they reach the equilibrium 
state. But the parameters measured in the swarm experiments only depend on the E/N 
ratio, and the study of their change with time is not absolutely necessary. The 
essential point is to obtain equilibrium values with a great accuracy and with the 
shortest computing time. We can show that, as for the integral method, the time taken 
by the system to reach equilibrium is inversely proportional to E/N. That the number 
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of iterations depends on E/N in the iterative methods described above causes major 
inconveniences. 

Our aim in the present paper is to eliminate this drawback by adapting to this 
problem the iterative technique on the so-called Eddington factor (developed by 
Hummer and Rybicki [ 181 in radiative transfer theory) and connecting it with a 
method of finite elements constructed by Lesaint [ 191 (roughly equivalent to the 
classical S, method [20]). We shall see that the number of iterations necessary to 
reach the equilibrium state is small (less than ten in the worst case) and almost 
independent of the E/N ratio. 

In the second part of this paper, we shall briefly give the various forms of the 
Boltzmann equation which allow the simulation of the hydrodynamic region of the 
main swarm experiments. We shall then give a detailed description of our method of 
solution. Lastly, we shall demonstrate its effectiveness in the calculation of the drift 
velocity and mean energy of the electrons for two model gases which have already 
been studied in previous works [ 10, 12, 16, 211. 

II. MICROSCOPIC DESCRIPTION OF SWARM EXPERIMENTS 

There are three main classes of swarm experiments: the steady state Townsend 
(SST), the pulsed Townsend (PT), and the time of flight (TOF) experiments. In the 
SST device, a steady stream of electrons passes from the cathode to the anode of a 
drift tube and the electron current at the anode is measured using an electrometer. 
Ionisation and attachment coefficients are obtained in this simple arrangement 1221. 
If the anode is split into annular segments, the lateral diffusion coefficient D, may 
also be measured [ 11. In the PT system our electron swarm is emitted from the 
cathode in the form of a short-duration pulse which drifts and diffuses through the 
drift tube. The resulting current at the anode is recorded as a function of time. The 
parameters usually obtained in the PT experiment are the drift velocity and the 
longitudinal diffusion coefficient D,. 

The TOF swarm experiment is the most involved of the three mentioned above. In 
this case the distribution is observed in space as well as in time. Practically, there are 
several versions of the TOF experiment going from the Bradbury-Nielsen shutter 
method 111 to the most recent one developed by Blevin et al. [ 23 1. 

Before going further into the description of the microscopic simulation of the 
swarm experiments we must, first of all, briefly recall the Boltzmann equation 
formalism. We know that in the case of a weakly ionized gas the Boltzmann equation 
describing the microcopic state of electrons takes the form 

g + v * V,f+ y * V,f = C[f(r, v, t)]. (1) 

Here we shall be only concerned with binary collisions of electrons with a 
background gas (of atoms or molecules of mass A4 and number density N) at rest. In 
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Eq. (l), y = eE/m is the acceleration of the electric field E and C[f(r, v, t)] is the 
general collision operator; r is the electron position. 

We may write C as the sum of two terms -vrf (v, being the total collision 
frequency) and J[f( r, v, t)], where -vTf && gives the number of electrons leaving 
the element & & of the phase space and J[J] & & the number of electrons coming 
into dr dv whatever the kind of collision considered. Then we have - -7 

~+v*v,f+y*v~f+v,f-JJlf]=O (2) 

with 

1 2 
Vim 2 

+N-.A. 

1-d v uion(vion,2) (Pdvion,2); 

qo(u) = 4 J d0 sin 8f (0, d), 
0 

vi = v2 + (2/m) ck, 
2 

v~O”,~=~+~e,,,; “:o”,2=~+~Eion. 

In the above relationships, A/( 1 - A) is the electron energy partition ratio after an 
ionisation collision, .sk and aion are, respectively, the excitation of level k and 
ionisation thresholds, 0 is the polar angle between -E and v. The total collision 
frequency I+. is equal to Nuc+, where or is the microscopic total cross section defined 
by the relation 

where urn, u8, uex, and uion are, respectively, the momentum transfer, attachment, 
excitation, and ionisation cross sections. We note that 

where uk is the cross section of the excitation of level k. 
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Here we assume that collisions in the center of the mass system are isotropic. It 
follows that the collision operator J[f] is only a function of the isotropic part ‘pO of 
the distribution function. 

The microscopic simulation of the SST experiment is usually restricted to the 
region in the drift tube where electrons are in equilibrium with the electric field. In 
that case the ionisation or attachment coefficients no longer depend upon the position 
r and we may write 

fh 4 = 44 LTW9 (3) 

wheref(r, v) is the stationary distribution function, n(r) the density of electrons, and 
F,,,(v) the SST velocity distribution function delined so that 

I &f(r, v) = n(r), 

I & F,,,(v) = 1. 

W 

(4b) 

By integrating Eq. (1) in time between zero and infinity and taking into account 
Eq. (3) and the continuity equation, i.e., 

vrn = (vssTlvssT)(a - rt>n (5) 

(0 sST being the module of the electron drift velocity in the SST experiment, a and tl 
ionisation and attachment coefficients, respectively), we have then the SST 
Boltzmann equation 

Y . VuFssT + vT + v . E (a - ~1) F,,, -W,,,l = 0 

with 

vss-r = dv vFsw 1 (7c) 

Relationships (7) show that the inclusion of a and q terms in (6) involves the 
nonlinearity of this equation and, consequently, an iterative approach. 

The Q and r7 terms come from the initial diffusion operator of Eq. (2) and account 
for the modification of the number of electrons in the drift tube under the influence of 
ionisation and attachment. 
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In the case of the PT experiment we may proceed in the same way as for the SST 
one, but we integrate in the position space (assumed infinite) and obtain the equation 
for the PT distribution function 

where we set 

Vim = N & Uuio$‘pT(V), 
i 

Pa) 

v, = N 
J 

& uu,F,,(v), Pb) 

and vi,,” and v, are the macroscopic ionisation and attachment frequencies for the PT 
experiment. 

When ionisation or/and attachment occur, FSST and F,, differ significantly [5]. 
The drift velocity vpT for the PT experiment is given by 

V PT = 
I 

du VFP,(V 1. (10) 

The TOF experiment can be simulated if the time before observation is long 
enough to allow a large number of collisions. The electron population has then 
reached its hydrodynamic state and the distribution function f(r, v, t) becomes 
separable into position, time, and velocity variables and can be expanded in a series 
in powers of the spatial gradient of the number density n(r, t), i.e., 

f(r, v, r) = -f p(v) i(-V,)’ n(r, t), 
I=0 

(11) 

where (V)' represents an l-fold outer product of the gradient operator with itself and i 
indicates an l-fold inner product operation. The coefficients r’)(v) in the expansion 
above are only velocity dependent tensors of rank I. If we substitute the expansion of 
f given by (11) into Eq. (1) we obtain a system of equations for the successive 
tensors p’)(v) [ 121: 

y . V”?(V) + d”yo)(v) - C[f’“‘(v)] = 0, (124 

y . v,~(I)(~) _ v .p’-l)(v) + i Gu)f(‘-j)(v) - ~[p)(~)] = 0. 

j=O 
(12b) 

In the above equations we set 

(13) 
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with the normalization conditions 

s duyO’(v) = 1, (144 

I f & (‘J(v) = 0, I> 1. 

In the presence of ionisation and attachment processes, the last integral in (13) 
becomes 

The --o(O) parameter is the reaction rate; the drift velocity is given by o(l) and the 
diffusion tensor by w . -(*r These two latter coefficients can be related to the measured 
TOF quantities [23]. Their microscopic calculations are made by iteratively solving 
system (12) with I = 2. 

Further information about the hydrodynamic regime and the foundation of its 
microscopic treatment will be found in the paper of Kumar et al. [ 151. 

The brief description above shows that the three classical swarm experiments may 
be simulated by some nonlinear kinetic equations deduced from the general linear 
form of the Boltzmann equation. We can put all these equations in the same form 

y~v,w+w--J[v]=o, (16) 

where V and J[w] differ according to the kind of experiment investigated. 
In Section III we develop a numerical method of solution for Eq. (16) above. 

III. FINITE ELEMENT SOLUTION OF EQ. (16) 

If in Eq. (16) the y . V, ly operator is written in spherical coordinates (the velocity 
vector v being replaced by the pair u,~, where y is the cosine of the angle between 
-E and v), and if we make the change of variables . 

r=&kl, 

we are brought to the following equation: 

av 1 -/l2 
QF+ r ~ * g + a,(r)ly - J[ ly] = 0, (17) 
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where 

r:, = r2 + P, 

F2 = 4&,, , 

h(r) = f I_‘: 6 v(r, Pu). 

We have restricted our study here to conservative situations (i.e., where there is 
neither ionisation nor attachment) and we have assumed that there is only one 
inelastic process (vibration or excitation of optical levels). The r variable is the 
square root of energy and is expressed in eV’12; E/N and Qcr,,., and uex) are 
expressed in volt . cm2 and cm2. 

Equation (17) has the same form as the neutron transport or radiative transfer 
equation for a spherical medium. The main discrepancy lies in the collision operator 
JM. 

Many investigations have been devoted to the numerical solution of equations such 
as (17). Although many methods have been set up, the S,,, method initiated by 
Carlson [24] is probably the most used in neutron transport theory and several codes 
exist in one- or multigroup approximations. The S, method being iterative, the main 
drawback which must be overcome is the prohibitive number of iterations. This 
problem will be left to one side for the moment and we shall now briefly describe the 
S, scheme used in this work. 

Our scheme comes from Lesaint’s work [ 191 and is based on a method of approx- 
imation by continuous finite elements. We must first write Eq. (17) in the conser- 
vative form: 

fW’P$(r’y)+r$ [(l -p’)w] 

+ a,r2ty - r’.T[iy] = 0. (18) 

We shall solve (18) on the area D = R * x Q, where r E R * = 10, R [ and fl E 52 = 
[-1 ; + 1 ] with the boundary conditions 

v@,~u) = t, P < 0, 

w(O9 P) = w(O, -PI* 

(194 

(lgb) 
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Range R * is taken as finite for numerical computations; 5 is an arbitrary constant 
R is chosen large enough so that I@,.B) and consequently < can be assumed small 
(the value of R is fixed to satisfy the inequality R*yl(R,p) < 10e6, v being 
normalized) Note that relation (19a) involves spherical symetry in yl(R, p) for large 
values of R in the backward direction. This assumption, which is not realistic in a 
general way, can be made here due to the low value of 4 chosen and since the 
function IC/ is normalized. Numerical checks show that the values of the macroscopic 
quantities are the same whatever the dependency of r on ~1. The only differences are 
in the high energy part of the distribution function but the weight of these values is 
negligible if R is taken large enough. The choice of Eq. (19a) is similar, in the case of 
radiative transfer, to that of a finite spherical atmosphere with a flux of photons 
entering it from outside. 

If we introduce the moments cpi of orderj, 

q(r)= 1 j+‘4w’w(rd); j = 0, 1, 2 ,..., 
-I (20) 

we are led, by integrating (18) respectively in lu and r, to the following conservative 
relationships: 

and 

rbdrd - rh(r,) + j" dr +W r'Co&) 
rc2 

(21) 

(22) 

Relationships (21) and (22) account for the conservation of the flux in the range 
R * and the [r,, r,] x 0 array, respectively. 

The basic idea in the building of the discrete scheme is to find functional forms for 
ty(r, p) so that they satisfy the discrete approximations of conservative relations (2 1) 
and (22). With this aim we first replace the dense ranges R* and B by the discrete 
ones R* and d so that 

R* = (0 = r,, < rl < . . - ( r, = R ), (234 

d= (-1 =P-, <pelt1 < .a. <P,,=O<P, < -0. <~l,-~ <,u,= 1). (23b) 

The I and J integers are greater than one. It follows that the new set fi = K* x fi 
is split in rectangular areas A,, where 

(24) 
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We shall assume as usual that 

P-j+1 =Pj-1. 

In each area A,(0 < i < I - 1; -J < j < J - 1) we define the coefficients Bi+ ,,* and 
aj+,,* so that 

0 < 4+1,2, aj+1/2 < 13 

aj+lp= 1 -a-j-I/29 

and the centered values T:+,,~ and ,u~+,,~ such that 

r. rt1/2=oit*,2ri+* + (1 -eit1,2)ri9 (25) 

Pj+l/2=aj+l/2Pj+l + C1 -aj+l/21Pj* (26) 

In every A,, the function tq is approximated by the expression W = a + br + C,B, which 
is determined by its values at the points (Fig. 1) (i, j + f), (i + 1, j + $), (i + f, j), and 
(i + 1, j + 1) with the following relationships being verified: 

ei+1/2Wi+l,j+l/2 + C1 me, 1 - - I+ 112 Vi,j+ l/2 = Vi+ ll2,j-t 1125 (27) 

aj+1,2Wi+vz,j+1 + C1 -aj+ 112) Vi+ 1/2,j= Wit IlZ,j+ 112’ (28) 

We must then find a function W which is continuous for all values of A jj and such 
that 

5 dr dp Hy = 0, O<i<I- 1, -J<j<J- 1, (29) 
A i, 

v(R, Pjt 1,~) = (3 Pj+ l/2 < O* (30) 

i,j+l i+l,j+l 
2 

i*l,j+l 

I i+l,j*l 
----B-e----- ; -2- 1 - - - 

I 
Aii I 

i+l.j+l 
2 

i-1 i+l,j 
2 

i*l,i 

FIG. 1. Description of a cell in r - fl space. 
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The numerical calculation of the quadratures in (29) is made with the two following 
relationships (where g, and g, are two arbitrary functions of ,U and I): 

1 

,Uj+l 

4 g,or) m #j+ I/2 gloljt l/2 19 (31) 
u/ 

i 

ritt 

drg2W - wi+ 1/2 g2(ri+ 1,2). (32) 
ri 

In the discrete set 0, (29) may be written 

wi+l/2wj+ u2HV(ri+ 1/23Pj+ 112) = O- (33) 

The variables ri+ i,*(O < i < Z - 1) and ,u~+ ,,2 (-J <j < J- 1) are defined by 
relations (25) and (26); the coefficients wi+ ,,2 and wj+ I,2 are positive weights with 
the symmetry condition on o~+,,~ 

Ojt l/2 = O-j- l/2 ; O<j<J-1. (34) 

The parameters uj+ ,,*, w-~-,,~, wi+ ,,2, and ri+ ,,* may be chosen in different 
ways. We make the approximate function p verify discrete forms of conservative 
equations (21) and (22). By adding relations (33) for all j lying between -J and 
J - 1, we see that the discrete form of relation (21) is satisfied if we have [ 191 

Y Ojtl/2 ($ ((l -cl') W(wN) (ri+~~z~Pj+~~2)=09 
j= -J 

O<i<Z- 1. (35) 

We then obtain the following conservative equation (discrete form of (21)): 

kit l/2) + ~~,i+~~2~f+~~263(~i+ ~2) 

J-1 

lr2 -i i+l/Z jjlJ oj+*12J[v/it l/Z,j+ l/21 = O, (36) 

where @jr and &, are discrete approximations of pi and qO. 
Substituting (28) in (35) produces 

(37) 
,,~~~~, C1 + 24t IPj+ I/2 - Qf+ 1,2) 

J 

= Oj-1/L 

Pj-Pj-I 
C1 + 2Pj-lPj- L/2 - 3Pf- 112) =Pj 
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for -J+ 1 &j<J- 1 and 

l + 2PJ- SJ- l/2 - 3.C 1,* = 1 + 2c1-5+ *iu-,+ l/2 - 3/l:,+ ,,2 = 0. (38) 

From the results above we can deduce the classical equality [20] 

We may now add relations (36) for all i lying between I, and I,. To obtain the 
discrete form of (22), i.e., 

i=Il-1 

r:*&(~,2) - +wI,) + c wt+ 1/LZaT,i+I,*4+ 1/2POtri+ 112) 

I=:,- L j=J-1 
(40) 

-4 c ,g, wi+ l/Z”jt 1/26-t Il24Fi+ 1/2,j+ */21 = O 

we must set 

rf;cw,*) - rf,@*(r,,) = i=‘2-’ wit I/2 (g c*2PI)) tri+ I/2)’ c C41) 

Since the function I&,,u) is linear for r and ~1 in A,, C1 is only linear with respect to 
r. It follows that relation (41) above must be verified in A, by the function g,(r) = 
a’ + b’r whatever the coeffkients a’ and b’. We then obtain the relations 

2 
ri+r - r; = 2w. *t1/2rit1/29 O<i<Z- 1, (42) 

rL - 1 ri = W+ 1,2rL 1,29 O<i<Z- 1. (43) 

Equations (42) and (43) allow the calculation of wi+ 1,2 and ri+ ,,2. In order to 
obtain e~~+r,~ and pji+ 1,2 from (37) and (38), we must add a supplementary 
relationship. To do that we observe (by using (37)), that if ojt ,,2 is not very different 
from Pj+ 1 -pj, then /?, is almost equal to 1 - ,u;. For this reason we choose to set 

P,= l-&9 O<j<J. (44) 

Replacing pj in (37) by the above value, we obtain the second-order equation 

3~~+,/201j2-1Uft1)+~j+1/2~j-~j+1-iui3+Clj+1) 

+A&, -+f=o, (45) 

which gives us P,~ ,,*. The weights IX,+ ,,2 are then obtained by using (37) and the 
coeffkients 8!+ ,,r and a,, ,,2 with the help of (25) and (26). 
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Taking into account the above relations (3 l)-(33) and (44), relation (33) may be 
written 

Oi+ 1/2Pj+ 1/2frf+ 1 Pi+ l,j+ l/Z - 4 @i,j+ l/2> 

+ wi+1/2rl+L12fPj+I Wi+ 1/2,j+l -PjPi+1/2.J) (46) 

+ Wj+1/2Wi+1/2rf+l,2(a~,i+1/21i+1/2,j+1/2 -4qi+ l/Z,j+1/21) = O* 

Using relations (25) and (26) we can write the above relation in the symmetrical 
form 

Vi+ I/Z,jt 112 (W~+I/Z bj+~tIAi+1/2 + ~i+1/2ritu2Bjt1/2 

+ Ojt 1/2wi+ 1l2rY+ 1/2OlT,it 112) 

=OJ+1/2 (1Uj+1/21Ai+I/21Jiitl,j+l/2 

+ Wit1/2rit l/2 ~+1/2WitIlZ,j B. - 

+ wJt l/2 wi+ l/26+ ,,24Pi+ I/Z,jt ,121 

with I- 1 >i>O -J<jgO; we set / / 7 

Bit1/2 = (aJ+l12pJ+ t1 - aJt1/2)bjt,)/aj+,/2, 

A i+ I/2 = (rS+ 1f2 + ‘tt It1 - ei+ 1/2)Y(l - Oit l/2)’ 

(47) 

(48) 

(49) 

BY Ih,2 ( we denote the absolute value of pj+ 1,2. 
Equation (47) is only valid in the region where cl/+ ,,2 is negative. If pj+,/2 is 

positive, we may use Eq. (47), but the A;+ 1,2 term must be replaced by A,?+ ,,2 with 

A?+,/2 = (rfeit1/2 + rf,,(l -6~+112)Y~i+1/2 (50) 

+l . 

10 12 14 16 

9 11 13 15 
r 
l 

a 6 4 2 

7 5 3 1 

-1 

0 R 

FIG. 2. Meshes in r -p space. 
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and Wi+,,j+l,z by @i,j+,,2, with O<i<I- 1, O<j< J. When,u equals -1 (j=-J), 
the derivative terms in ,u vanish and pi+ ,,2,--5 is given by the equation 

pi+ 1/2,-J[Ai,l/2 + wi+ 1/2riz+ I/zaT,i+ ,121 

= PGl/2Y/i+I,-J+ Wi+l,*Tf+*,2J[~i+l,2,-J1’ (51) 

The determination of W is carried out by means of Eqs. (42)-(51), (27), and (28). 
The iterative process is started with an arbitrary choice of W allowing a first estimate 
of j[W]. The calculation of the successive j[@] values is made by using the values of 
I,? obtained in the preceding iteration. The calculation follows the characteristic 
curves according to the scheme of Fig. 2. 

IV. THE ACCELERATION PROCEDURE 

By operating on (17) or (18) with 

+1 +I 
f I dp a.. and 4 I iu 4 -..y 

--I -I 

we obtain the two-moment equations 

1 aP2P,) 1 m 1 ~(r4%#,) - * ~ = -a,,(r) fpo(r) + - * - * 7 * 
r2 ar 2E/N M T ar + sex b&eJL (52) 

We set 

S,,[tp,(r,,)] = $ . * . v&J9 

r:, = r2 + 4~,,. 

(53) 

(54) 

(55) 

The moments cpl(r) have already been introduced above. 
The system of equations (52) and (53) is not closed since it is a function of the 

three moments oO, (o,, and rp,. In order to close it we may introduce in (52) and (53) 
the so-called Eddington factor&(r) equal to the ratio ‘p2/(po [ 181. We obtain the new 
equations: 
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I 
H(r) 

-%!x fed(r) + sex [ II 
‘7;) =;r;H(r) (fe;crl 3) e$/,’ 

(56) 

(57) 

where we set 

K(r) = r*p ,(r>, 
H(r) =fdr) rpdr>. 

(58) 

(59) 

If the Eddington factor is known, Eqs. (56) and (57) allow the determination of the 
moments rp, and vi (isotropic part and first anisotropy of the distribution function) 
taking into account the initial conditions generally unknown 

From the definition of fed, it can easily be seen that fed lies between 4 (when the 
distribution function is isotropic) and one (if all the electrons are in the forward 
direction). It follows that fed is a slowly varying function of r and that a rough 
approximation of fed in (56) and (57) will lead to a good estimate of e+, and cpi . 
Equations (56), (57), (60), and (61) can then be connected to Eqs. (47)-(51) and the 
Eddington factor fed may be obtained from the S, calculations. We may then proceed 
as follows: First we choose an approximate value for fed (f for example) and we use 
it to solve (56) and (57) with some arbitrary initial conditions. The values of o,, so 
obtained are normalized to one and put into J[w]. A new estimate off,, can be 
drawn up by using Eqs. (47~(51). A new solution of (56) and (57) is made with the 
last estimate of fed and with the values of K(R) and H(R) coming from the S, 
calculations. The process is then repeated until convergence. 

The numerical solution of Eqs. (56) and (57) is straightforward and a 
Runge-Kutta scheme or a predictor-corrector method is very convenient. 

The idea of iteration on the Eddington factor is not new, having previously been 
used in radiative transfer theory [25]. However, the use of the S, method as a tool to 
calculate fed does not seem to have been adapted yet. Hummer and Rybicki [ 181, for 
example, obtain fed with the Fautrier method. They are led to the solution of a linear 
block tridiagonal system, the resolution of which is much more time consuming than 
the simple sweeping of the area D which suffices in our case. 
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V. NUMERICAL RESULTS 

In order to check the effectiveness and the accuracy of our method, we have 
chosen two model situations which have already been investigated by Pitchford et al. 
[12], Braglia [21], Lin et al. [16], and Reid [26]. 

In the first model case the cross sections roughly approximate those of methane 
(Fig. 3). The synergism between the Ramsauer minimum in the momentum transfer 
cross section and the first vibrational process involves a large anisotropy in the 
distribution function [9] and makes this case very interesting to check the different 
methods. 

In Table I we tabulate the number of iterations necessary to reach convergence 
with and without an accelerating process. The expression t/t1 is the ratio between the 
calculation times at E/N and at E/N = 1Td. The number of iterations and the 
calculation time become clearly independent of E/N when the acceleration process 
comes into play. 

We note that the stop test on the drift velocity is equal to lo-’ 9s. The magnitude 
of the test is not realistic in practice, but it has been chosen here in order to 
accurately follow the evolution of the macroscopic parameters toward convergence. 
Nevertheless, the decrease in the number of iterations is spectacular. 

In Table II we compare results of Braglia (Monte Carlo) and Lin et al. (moment 
methods) with ours for the drift velocity and the mean energy of electrons. We can 

FIG. 3. Electron collision cross section in CH, 1211: CT,,,, momentum transfer; oCxr inelastic. 
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0 1 2 3 4 5 6 7 a 9 10 

EIN(Td) 

FIG. 4. Electron drift velocity as a function of E/N: solid curve, present work; circles, Monte Carlo 
simulation of Braglia [21]; squares, moment theory [ 161. The dashed curve represents some 
experimental results. 

TABLE I 

Comparison of the Calculation Time (I) with and without the Acceleration Process 

E/N IT” 

With acceleration Without acceleration 

t tit, IT/IT, IT t 0, IT/IT, 

1 IT,=4 t, = 98.5 1 1 IT,=30 
2 6 150.2 1.5 1.52 81 
3 6 155.1 1.5 1.57 195 
3.9 8 205.2 2 2.08 354 
5 I1 285.9 2.75 2.90 483 
6 I 182.2 1.75 1.85 636 
7 7 186.6 1.75 1.89 766 
8 7 176.4 1.75 1.79 923 
9 8 202.0 2 2.05 

t,= 487.2 1 1 
1415.5 2.90 2.9 
3180.1 6.53 6.5 
5775.9 11.85 11.8 
7891.7 16.20 16.1 
10392 21.33 21.2 
12508 25.67 25.53 
15094 30.98 30.76 

’ The number of iterations is given by IT. 
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TABLE II 

Comparison of Present Results with Those of Braglia (Monte Carlo) and Lin et al. (Moments Method) 
in the Case of Methane 

Braglia Lin et al Present work 

EIN 
U-4 

W 
( lo6 cm/set) (2) 

W 
( lo6 cm/set) 

W 
( lo6 cm/set) (2) 

1 2.80 0.0759 3.01 2.88 0.0780 
2 7.04 0.188 7.06 7.19 0.193 
3.9 9.16 0.476 9.28 9.20 0.480 
6 8.07 0.724 7.91 8.03 0.719 
8 7.02 0.920 6.90 6.98 0.918 

Note. W and (E) are respectively the drift velocity and the mean energy of electrons. 

TABLE III 

Comparison of Our Results with Those of Pitchford (L.E.) and Reid 
(MC.) in the Case of Mode1 Gas for Several Values of 2J + 1 

Eilv 
(Td) 

1 
1 
1 
1 
1 
1 
1 

21+1 

3 
5 
7 

15 
21 

L.E. (7 terms) 
M.C. 

I2 3 6.254 
12 5 6.698 
12 7 6.778 
I2 15 6.888 
12 21 6.833 
12 L.E. (7 terms) 6.839 
12 M.C. 6.87 f 0.069 

24 3 8.060 
24 5 8.680 
24 7 8.799 
24 15 8.873 
24 21 8.881 
24 L.E. (7 terms) 8.883 
24 M.C. 8.890 f 0.089 

W 
( lo6 cm/set) 

1.252 
1.266 
1.266 
1.270 
1.270 
1.272 
1.255 f 0.013 



A MODIFIED FORM OF THE s, METHOD 135 

0.46 

0.42 

8.38 

0.34 
l2Tdl 

0.0 1.0 1.9 2.9 3.8 4.8 

EWVl 

FIG. 5. Variation of the Eddington factor with energy for three values of E/N. 

see the very good agreement between the overall results which verifies the accuracy of 
the different methods used. The corresponding curves are plotted in Fig. 4. The 
maximum in the drift velocity curve is connected with the increasing anisotropy of 
the distribution function. In Fig. 5 the variation of the Eddington factor is plotted 
against the electron energy for three different E/N values corresponding to the rising 
part, the maximum, and the decreasing part of the drift velocity, respectively. The 
Eddington factor deviates slightly from 3 and the largest value occurs in the 
minimum region of the momentum cross section. 

The second case we deal with is the model atom of Reid [26]. His Monte Carlo 
results and those of Pitchford are available for comparison with our own. The 
momentum elastic transfer cross section is constant at 6 x lOpi6 cm’ and the 
inelastic cross section is of the form (10~ - 2) lo-l6 cm*, i.e., a ramp with a 
threshold energy at 0.2 eV. The neutral mass is 4 amu. Table III shows the drift 
velocity obtained with the three methods at three values of E/N. Our results compare 
well with both Monte Carlo and Pitchford values, providing a good check on the 
accuracy of our numerical method. 

We note that in practice integers I and J were chosen as 15 1 and 7, respectively, in 
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the S, calculations. Larger values involve a few changes in the macroscopic 
parameters and mainly affect the estimation of high order anisotropies of the 
distribution function. 

VI. CONCLUSION 

In this work we have set up a numerical method of solution of the Boltzmann 
equation which can be applied to the calculation of the transport parameters 
measured in swarm type experiments. We have shown that, if we add to the Lesaint 
S, method an accelerating process based on an iteration on Eddington factor, the 
number of iterations becomes very small and practically independent of the physical 
properties of the system (E/N value and type of background gas). Our results are in 
very good agreement with those obtained by other authors in the same physical 
situations. 

Our feeling is that the method given in this paper is very likely to be one of the 
most powerful currently operating. Furthermore, it is very easy to set up and it may 
be run on quite a small computer. Whatever the type of background gas, the 
calculation of macroscopic quantities needs less than 128 K bytes in the central 
processor. 

We restricted our investigations here to the situation where there is no ionisation or 
attachment in the swarm. But accounting for more involved processes is 
straightforward and currently we are running several programs quite satisfactorily for 
molecular gases (SF,, N,, O,, CH,, etc.), allowing the calculation of the electron 
distribution function whatever the kind of collision occurring in the drift tube and 
whatever the strength of the anisotropy. 

Most of the calculations in this paper were done on a SOLAR 16/65 minicomputer 
which is not very fast. To check the speed of our method, some runs have been 
carried out on an IBM 370 computer. In that case the calculation time is about one 
second. This time seems to be lower than the values given by Pitchford et al. 
corresponding to the same situation. 
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